Table 3. Probable hydrogen bonds in bis(cyclohexylammonium) D-glucose 6-phosphate trihydrate crystals

	Translation			$X-H \cdots \mathrm{O}$
$X-\mathrm{H} \cdots \mathrm{O}$	$a b c$	$X \cdots \mathrm{O}(\AA)$	H $\cdots \mathrm{O}(\AA)$	$\left({ }^{\circ}\right)$
$\mathrm{O}(1)-\mathrm{H}(\mathrm{O} 1) \cdots \mathrm{O}(81)$	001	2.733 (5)	1.81 (6)	160 (6)
$\mathrm{O}(2)-\mathrm{H}(\mathrm{O} 2) \cdots \mathrm{O}(W 6)$	101	2.837 (7)	2.04 (6)	139 (5)
$\mathrm{O}(3)-\mathrm{H}(\mathrm{O} 3) \cdots \mathrm{O}(91)$	101	2.611 (5)	1.74 (5)	150 (5)
$\mathrm{O}(4)-\mathrm{H}(\mathrm{O4}) \cdots \mathrm{O}(W 1)$	100	2.706 (5)	1.77 (5)	163 (5)
$\mathrm{O}(11 A)-\mathrm{H}(\mathrm{OA}) \cdots \mathrm{O}(7)$	000	2.715 (7)	1.77 (8)	169 (8)
$\mathrm{O}(11 B)-\mathrm{H}(\mathrm{OB}) \cdots \mathrm{O}(7)$	000	2.747 (11)	1.93 (17)	140 (15)
$\mathrm{O}(21)-\mathrm{H}(\mathrm{O} 21) \cdots \mathrm{O}(W 3)$	000	2.764 (5)	1.92 (5)	146 (5)
$\mathrm{O}(31)-\mathrm{H}(\mathrm{O} 31) \cdots \mathrm{O}(81)$	100	2.681 (5)	1.83 (5)	146 (5)
$\mathrm{O}(41)-\mathrm{H}(\mathrm{O} 41) \cdots \mathrm{O}(W 4)$	$00 \stackrel{1}{1}$	$2 \cdot 683$ (6)	1.75 (6)	165 (6)
$\mathrm{O}(W])-\mathrm{H}(W]) \cdots \mathrm{O}(7)$	000	2.720 (5)	1.77 (5)	172 (5)
$\mathrm{O}(W 1)-\mathrm{H}(W 11) \cdots \mathrm{O}(71)$	001	$2 \cdot 650$ (5)	1.69 (5)	174 (5)
$\mathrm{O}(W 2)-\mathrm{H}(W 2) \cdots \mathrm{O}(7)$	000	2.789 (6)	1.90 (5)	152 (5)
$\mathrm{O}(W 2)-\mathrm{H}(W 21) \cdots \mathrm{O}(4)$	100	2.771 (6)	2.01 (6)	135 (5)
$\mathrm{O}(W 3)-\mathrm{H}(W 3) \cdots \mathrm{O}(81)$	T00	2.727 (5)	1.79 (5)	163 (5)
$\mathrm{O}(W 3)-\mathrm{H}(W 31) \cdots \mathrm{O}(9)$	T00	2.698 (6)	1.81 (5)	153 (5)
$\mathrm{O}(W 4)-\mathrm{H}(W 4) \cdots \mathrm{O}(W 5)$	000	2.750 (5)	1.83 (5)	160 (5)
$\mathrm{O}(W 4)-\mathrm{H}(W 41) \cdots \mathrm{O}(W 1)$	000	2.798 (6)	1.84 (6)	173 (5)
$\mathrm{O}(W 5)-\mathrm{H}(W 5) \cdots \mathrm{O}(8)$	T00	2.696 (6)	1.87 (5)	143 (4)
$\mathrm{O}(W 5)-\mathrm{H}(W 51) \cdots \mathrm{O}(21)$	000	$2 \cdot 846$ (5)	1.98 (5)	150 (5)
$\mathrm{O}(W 6)-\mathrm{H}(W 6) \cdots W(2)$	000	$2 \cdot 962$ (8)	$2 \cdot 62$ (5)	101 (4)
$\mathrm{O}(W 6)-\mathrm{H}(W 61) \cdots W(3)$	000	2.883 (8)	2.68 (6)	92 (4)
$\mathrm{N}(6)-\mathrm{H}(\mathrm{N} 61) \cdots \mathrm{O}(8)$	000	$3 \cdot 301$ (7)	2.31 (4)	174 (4)
$\mathrm{N}(6)-\mathrm{H}(\mathrm{N} 61) \cdots \mathrm{O}(9)$	000	3.046 (6)	$2 \cdot 40$ (5)	122 (4)
$\mathrm{N}(6)-\mathrm{H}(\mathrm{N} 62) \cdots \mathrm{O}(21)$	100	$3 \cdot 173$ (7)	2.44 (5)	130 (4)
$\mathrm{N}(6)-\mathrm{H}(\mathrm{N} 62) \cdots \mathrm{O}(31)$	100	$3 \cdot 379$ (7)	2.54 (5)	141 (4)
$\mathrm{N}(6)-\mathrm{H}(\mathrm{N} 63) \cdots \mathrm{O}(51)$	000	$3 \cdot 202$ (7)	2.31 (3)	149 (4)
$\mathrm{N}(6)-\mathrm{H}(\mathrm{N} 63) \cdots \mathrm{O}(61)$	000	$2 \cdot 917$ (6)	$2 \cdot 16$ (4)	131 (4)
$\mathrm{N}(7)-\mathrm{H}(\mathrm{N} 71) \cdots \mathrm{O}(6)$	000	$2 \cdot 944$ (6)	$2 \cdot 18$ (5)	132 (4)
$\mathrm{N}(7)-\mathrm{H}(\mathrm{N} 71) \cdots W(2)$	000	$3 \cdot 209$ (6)	$2 \cdot 60$ (5)	119 (4)
$\mathrm{N}(7)-\mathrm{H}(\mathrm{N} 72) \cdots \mathrm{O}(5)$	000	2.956 (6)	2.05 (3)	150 (4)
$\mathrm{N}(7)-\mathrm{H}(\mathrm{N} 73) \cdots \mathrm{O}(3)$	T00	2.908 (6)	2.00 (5)	149 (4)
$\mathrm{N}(7)-\mathrm{H}(\mathrm{N} 73) \cdots \mathrm{O}(71)$	001	$3 \cdot 154$ (5)	2.69 (5)	108 (3)
$\mathrm{N}(8)-\mathrm{H}(\mathrm{N} 81) \cdots \mathrm{O}(91)$	000	$2 \cdot 694$ (6)	1.72 (5)	162 (5)
$\mathrm{N}(8)-\mathrm{H}(\mathrm{N} 82) \cdots \mathrm{O}(2)$	T0 T	3.057 (6)	2.57 (5)	110 (4)
$\mathrm{N}(8)-\mathrm{H}(\mathrm{N} 82) \cdots \mathrm{O}(11 A)$	000	$3 \cdot 175$ (8)	2.42 (5)	132 (4)
$\mathrm{N}(8)-\mathrm{H}(\mathrm{N} 83) \cdots \mathrm{O}(9)$	000	2.794 (6)	1.85 (4)	155 (4)
$\mathrm{N}(9)-\mathrm{H}(\mathrm{N} 91) \cdots \mathrm{O}(8)$	000	$2 \cdot 840$ (6)	1.85 (5)	173 (4)
$\mathrm{N}(9)-\mathrm{H}(\mathrm{N} 92) \cdots \mathrm{O}(71)$	001	$2 \cdot 745$ (6)	1.77 (4)	164 (4)
$\mathrm{N}(9)-\mathrm{H}(\mathrm{N} 93) \cdots \mathrm{O}(41)$	101	3.026 (6)	2.04 (4)	169 (4)

contrast to the Ba salt, there are no intramolecular H bonds between phosphate O atoms and sugar hydroxyl groups. Also interesting is the fact that the $\mathrm{O}(11 A) \mathrm{H}$ and $\mathrm{O}(11 B) \mathrm{H}$ hydroxyl groups are involved in hydrogen bonds to the same $O(7)$ atom.

Financial support was received from the RP.II. 10 program.

Fig. 2. The packing arrangement. Dashed lines show hydrogen bonds. (C-bonded H atoms are omitted for clarity.)

References

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Katti, S. K., Seshadri, T. P. \& Viswamitra, M. A. (1982). Acta Cryst. B38, 1136-1140.
Lis, T. (1985). Carbohydr. Res. 135, 187-194.
Lis, T. (1987). Poster on 29 Konwersatorium Krystalograficzne, Jaszowiec, Poland.
narendra, N. \& Viswamitra, M. A. (1985). Acta Cryst. C41, 1621-1624.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for crystal structure solution. Univ. of Göttingen, Federal Republic of Germany.
Starynowicz, P., Lis, T. \& Weichsel, A. (1986). Pre-meeting Symposium on Organic Crystal Chemistry, Poznań-Rydzyna, Poland. Collected Abstracts, p. 67.
Weichsel, A. \& Lis, T. (1989). Pol. J. Chem. In the press.

Acta Cryst. (1990). C46, 98-101

Structure of a Novel Hexaaza Macrocyclic Ligand of Schiff-Base Type

By Kinga Suwińska
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01224 Warsaw, Poland

(Received 8 February 1989; accepted 24 April 1989)

458.6, orthorhombic, Fdd2, $a=16 \cdot 328$ (1), $b=$ 56.632 (3) , $c=5 \cdot 426$ (1) $\AA, V=5017$ (1) $\AA^{3}, \quad Z=8$, $D_{x}=1.214 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda=1.54178 \AA, \quad \mu(\mathrm{Cu} K \alpha)=$
$5.385 \mathrm{~cm}^{-1}, \quad F(000)=1984, T=298 \mathrm{~K}$, final $R=$ 0.036 for 1219 reflections. The molecule has a twofold axis coinciding with a crystallographic twofold axis. The molecule exhibits a small molecular cavity open on one side of the macrocyclic ring and closed on the other side.

Introduction. An effort to synthesize the Schiff-base type macrocyclic ligand with four $-\mathrm{CH}=\mathrm{N}$ - units (I) was made because of the possibility of simultaneous complexation of two transition-metal cations. In the course of preparation of macrocycle (I), formation of the compound with two 1,3-diazacyclohexane rings incorporated into the macrocycle was observed by other spectroscopic methods (Pietraszkiewicz \& Gaasiorowski, 1989). The X-ray diffraction analysis of that compound was undertaken in order to establish which of the two possible isomers [(II) or (III)] was obtained.

(I)

(II)

(III)

Experimental. Crystal approximate dimensions 0.18 $\times 0.28 \times 0.28 \mathrm{~mm}$; intensities measured at 298 K on Enraf-Nonius CAD-4 four-circle diffractometer ($\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$, graphite monochromator). Lattice parameters determined by least squares from 24 reflections ($16<\theta<35^{\circ}$). Total of 2748 reflections (1317 independent reflections, $R_{\text {int }}=$ 0.017) up to $\theta=70^{\circ}$ measured in the $\omega-2 \theta$ scan mode, index range $h 0 \rightarrow 19, k-68 \rightarrow 68, l-6 \rightarrow 0$. The data were collected in a monoclinic unit cell of C type with $a=5.431(1), \quad b=16.328$ (1),$\quad c=$ 28.473 (1) $\AA, \beta=95 \cdot 50^{\circ}$, and the space group was established to be Cc. After structure solution the twofold symmetry of the molecule was detected and the unit cell was transformed to the orthorhombic $F d d 2$ space group; transformation matrix [010, 102, 100] was applied. 1219 reflections considered as observed $\left[F_{o}>2 \sigma\left(F_{o}\right)\right.$]. The intensity variation of three standard reflections, measured every hour, was less than 1.5%. No absorption or secondaryextinction correction. Structure solved by MULTAN11/82 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982) and refined with the SDP system (B. A. Frenz \& Associates Inc., 1985). Weights of each reflection in the refinement (on F) were calculated from $w=1 / \sigma^{2}\left(F_{o}\right), \sigma\left(F_{o}\right)$ being the e.s.d., based on counting statistics, of the observed structure factor. Scattering factors taken from International Tables for X-ray Crystallography

Table 1. Fractional atomic coordinates ($\times 10^{4}$) and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for non- H atoms, with e.s.d.'s in parentheses
$B_{\mathrm{eq}}=\frac{4}{3}\left[a^{2} B(1,1)+b^{2} B(2,2)+c^{2} B(3,3)+a b(\cos \gamma) B(1,2)+\right.$ $a c(\cos \beta) B(1,3)+b c(\cos \alpha) B(2,3)]$.

	x	y		
	x	z	$B_{\text {eq }}$	
$\mathrm{C}(1)$	$5996(1)$	$318 \cdot 0(3)$	1639	$3 \cdot 35(4)$
$\mathrm{N}(2)$	$6123(1)$	$479 \cdot 6(3)$	$101(5)$	$3 \cdot 69(4)$
$\mathrm{C}(3)$	$5838(1)$	$717 \cdot 9(3)$	$740(6)$	$3 \cdot 58(5)$
$\mathrm{C}(4)$	$5403(1)$	$829 \cdot 1(3)$	$-1447(5)$	$3 \cdot 43(4)$
$\mathrm{C}(5)$	$4538(1)$	$734 \cdot 1(3)$	$-1865(5)$	$3 \cdot 17(4)$
$\mathrm{N}(6)$	$3968(1)$	$811 \cdot 1(2)$	$84(4)$	$2 \cdot 99(3)$
$\mathrm{C}(7)$	$3737(1)$	$1060 \cdot 3(3)$	$-341(5)$	$3 \cdot 78(5)$
$\mathrm{C}(8)$	$3172(1)$	$1149 \cdot 3(3)$	$1642(6)$	$4 \cdot 10(5)$
$\mathrm{C}(9)$	$2426(1)$	$990 \cdot 2(3)$	$1831(7)$	$4 \cdot 58(6)$
$\mathrm{N}(10)$	$2714(1)$	$748 \cdot 1(3)$	$2205(5)$	$3 \cdot 92(4)$
$\mathrm{C}(11)$	$3211(1)$	$667 \cdot 4(3)$	$136(5)$	$3 \cdot 12(4)$
$\mathrm{C}(12)$	$3403(1)$	$407 \cdot 7(3)$	$530(5)$	$2 \cdot 89(4)$
$\mathrm{C}(13)$	$3810(1)$	$335 \cdot 6(3)$	$2638(5)$	$3 \cdot 50(4)$
$\mathrm{C}(14)$	$3986(1)$	$97 \cdot 7(3)$	$2981(5)$	$3 \cdot 41(4)$
$\mathrm{C}(15)$	$3762(1)$	$-69 \cdot 6(3)$	$1231(5)$	$3 \cdot 14(4)$
$\mathrm{C}(16)$	$3335(1)$	$2 \cdot 2(3)$	$-847(5)$	$3 \cdot 34(4)$
$\mathrm{C}(17)$	$3154(1)$	$240 \cdot 4(3)$	$-1195(5)$	$3 \cdot 18(4)$

(1974). All the H atoms were included in the refinement in calculated positions $[d(\mathrm{C}-\mathrm{H})=$ $1.08 \AA$]. The total number of parameters refined was 173: one scale factor, position parameters and anisotropic thermal parameters for non- H atoms, and isotropic thermal parameters for H atoms. Refinement resulted in final values of $R=0.036, w R$ $=0.039$ and $S=2.89$; in the last cycle $(\Delta / \sigma)_{\max }=$ 0.01 . Final max. and min. $\Delta \rho$ were 0.12 and $-0.17 \mathrm{e} \AA^{-3}$, respectively. All calculations performed on a MicroPDP11/73 computer. The final atomic coordinates are given in Table 1.*

Discussion. The isomer found in the course of the crystal structure determination was (II). The bond lengths, bond angles and selected torsion angles are given in Table 2. The molecule has a twofold axis coinciding with the crystallographic twofold axis. The diazacyclohexane six-membered ring has a chair conformation with the average atom deviation from the r.m.s. plane equal to $0 \cdot 246$ (3) \AA [range from -0.214 (3) \AA for $\mathrm{C}(8)$ to +0.274 (3) \AA for $\mathrm{C}(11)]$. The six atoms of the aromatic ring are planar within 0.014 (2) \AA [average deviation from planarity 0.009 (2) $\AA]$. The conformation of the 22 -membered central macrocyclic ring is described by torsion angles (Table 2) and is illustrated in Fig. 1. The two aromatic rings and the two diazacyclohexane rings are inclined to the least-squares plane of the central macrocyclic ring by the angles $61.5(1)$ and $29.8(1)^{\circ}$,

[^0]Table 2. Bond distances (\AA), bond angles $\left({ }^{\circ}\right)$ and selected torsion angles (${ }^{\circ}$) for non- H atoms, with e.s.d.'s. in parentheses

$\mathrm{C}(1)-\mathrm{N}(2)$	$1.256(3)$
$\mathrm{N}(2)-\mathrm{C}(3)$	$1.469(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.519(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.529(3)$
$\mathrm{C}(5)-\mathrm{N}(9)$	$1.474(4)$
$\mathrm{N}(6)-\mathrm{C}(7)$	$1.480(2)$
$\mathrm{N}(9)-\mathrm{C}(11)$	$1.480(2)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.505(4)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.519(4)$
$\mathrm{C}(9)-\mathrm{N}(10)$	$1.464(3)$

$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$117.4(2)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$110.1(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$113 \cdot 7(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(6)$	$111 \cdot 9(2)$
$\mathrm{C}(5)-\mathrm{N}(6)-\mathrm{C}(7)$	$109.3(2)$
$\mathrm{C}(5)-\mathrm{N}(6)-\mathrm{C}(11)$	$112 \cdot 2(2)$
$\mathrm{C}(7)-\mathrm{N}(6)-\mathrm{C}(11)$	$108 \cdot 3(1)$
$\mathrm{N}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$111.4(3)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$110 \cdot 0(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(10)$	$107.9(2)$
$\mathrm{C}(9)-\mathrm{N}(10)-\mathrm{C}(11)$	$111.5(3)$
$\mathrm{N}(6)-\mathrm{C}(11-\mathrm{N}(10)$	$107 \cdot 9(2)$
$\mathrm{N}(6)-\mathrm{C}(11)-\mathrm{C}(12)$	$111 \cdot 3(1)$

$\mathrm{N}(10)-\mathrm{C}(11)$	$1.458(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.519(2)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.834(4)$
$\mathrm{C}(12)-\mathrm{C}(17)$	$1.392(3)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.390(3)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.390(3)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.387(4)$
$\mathrm{C}(15)-\mathrm{C}\left(1^{1}\right)$	$1.478(3)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.395(3)$

$$
\begin{array}{ll}
\mathrm{N}(10)-\mathrm{C}(11)-\mathrm{C}(12) & 108 \cdot 1(2) \\
\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13) & 120 \cdot 0(2) \\
\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17) & 120 \cdot 3(3) \\
\mathrm{C}(3)-\mathrm{C}(12)-\mathrm{C}(17) & 119.7(2) \\
\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14) & 119 \cdot 7(2) \\
\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15) & 121 \cdot 0(2) \\
\mathrm{C}(44)-\mathrm{C}(15)-\mathrm{C}(16) & 119 \cdot 2(2) \\
\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}\left(1^{\prime}\right) & 118 \cdot 4(2) \\
\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}\left(1^{\prime}\right) & 122 \cdot 4(2) \\
\mathrm{C}(5)-\mathrm{C}(16) \mathrm{C}(17) & 120.0(2) \\
\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16) & 120 \cdot 4(2) \\
\mathrm{C}(15)-\mathrm{C}\left(1^{1}\right)-\mathrm{N}\left(2^{i}\right) & 123 \cdot 4(2)
\end{array}
$$

$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-134.6 (2)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	179.5 (2)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$76 \cdot 3$ (2)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	0.1 (3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(6)$	69.8 (2)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}\left(1{ }^{1}\right)$	$176 \cdot 9$ (2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(6)-\mathrm{C}(1)$	-163.0 (2)	$\mathrm{C}(1)^{1}-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$-177 \cdot 1$ (2)
$\mathrm{C}(5)-\mathrm{N}(6)-\mathrm{C}(11)-\mathrm{C}(12)$	58.4 (3)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}\left(1^{1}\right)-\mathrm{N}\left(2^{2}\right)$	-1754 (1)
$\mathrm{N}(6)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	59.9 (3)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}\left(1^{1}\right)-\mathrm{N}\left(2^{2}\right)$	$3 \cdot 4$ (2)
$\mathrm{N}(6)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)$	-121.6 (2)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12)$	0.3 (3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-179.7 (2)	$\mathrm{C}(15)-\mathrm{C}\left(1^{1}\right)-\mathrm{N}\left(2^{2}\right)-\mathrm{C}\left(3^{2}\right)$	$179 \cdot 1$ (1)

Fig. 1. ORTEPII (Johnson, 1976) view of the molecule with the atom numbering. The thermal ellipsoids are given at the 50% probability level.
respectively. The dihedral angle between the two symmetry related aromatic rings is 122.9° and that between the two diazacyclohexane rings is $59.5(1)^{\circ}$. The r.m.s. planes of the aromatic ring and the diazacyclohexane ring joined by the $\mathrm{C}(11)-\mathrm{C}(12)$ bond are perpendicular to each other $\left[90 \cdot 3(1)^{\circ}\right]$. The mol-
ecule is elongated in the $\mathrm{C}(5) \cdots \mathrm{C}\left(5^{\mathrm{i}}\right)$ [symmetry code (i) $=1-x,-y, z]$ direction $[d=8.451$ (2) $\AA]$; the shortest intramolecular contact across the macrocyclic ring occurs between the atoms $C(14)$ and $C\left(14^{i}\right)$ and is equal to $3.491 \AA\left[\mathrm{H}(14) \cdots \mathrm{H}\left(14^{i}\right)\right.$ distance is $2 \cdot 32 \AA$]. Consequently, the molecule exhibits a small internal cavity of approximate dimensions $4 \AA$ length, $2 \AA$ width and $1 \AA$ depth, which is open on the $\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}\left(16^{\mathrm{i}}\right)-\mathrm{C}\left(17^{\mathrm{i}}\right)$ side and closed, by the $\mathrm{H}(14) \cdots \mathrm{H}\left(14^{\mathrm{i}}\right)$ short intramolecular contact, on the other side. The cavity dimensions were estimated by tracing spheres at van der Waals radii about the atoms in the molecule and measuring the 'empty' space (Fig. $2 a$ and b). The cavity is 'filled' by the $\mathrm{H}(14)$ and $\mathrm{H}\left(14^{\mathrm{i}}\right)$ atoms which belong to the neighbouring molecule translated by the vector [001] (Fig. 2c); the penetration of the internal cavity is less than $1 \AA$ in depth. Because the dimensions of the internal cavity are so small it is unlikely that the investigated macrocyclic molecule is able to form inclusion-type complexes.

Fig. 2. Space-filling representation of the molecule: (a) view of the cavity, (b) bottom of the cavity showing the $\mathrm{H}(14) \cdots \mathrm{H}\left(14^{i}\right)$ intramolecular interaction, and (c) penetration of the internal cavity by the neighbouring molecule translated by the vector [001].

Fig. 3. Packing diagram; \mathbf{H} atoms are omitted for clarity.

Fig. 3 shows how the molecules pack in the crystal. The shortest interatomic distances to adjacent different molecules are: no $\mathrm{C} \cdots \mathrm{C}$ or $\mathrm{C} \cdots \mathrm{N}$ below $3.5 \AA ; \mathrm{N} \cdots \mathrm{N} 3 \cdot 396$ (3) \AA, between $\mathrm{N}(2)$ and $\mathrm{N}(10)$ at $\frac{1}{2}+x, y,-\frac{1}{2}+z ; \mathrm{N} \cdots \mathrm{H} 2 \cdot 44 \AA$, between $\mathrm{N}(2)$ and $\mathrm{H}(10)$ at $\frac{1}{2}+x, y,-\frac{1}{2}+z ; \mathrm{C} \cdots \mathrm{H} 2 \cdot 86 \AA$, between $\mathrm{C}(5)$
and $\mathrm{H}(13)$ at $x, y-1+z$; and $\mathrm{H} \cdots \mathrm{H} 2 \cdot 29 \AA$, between $\mathrm{H}(3 a)$ and $\mathrm{H}(9 b)$ at $\frac{1}{2}+x, y,-\frac{1}{2}+z$.

This work was supported by grant WPR III/6 from the Polish Academy of Sciences. The author is grateful to Dr Marek Pietraszkiewicz and Mr Rafal Gasiorowski for the crystals used.

References

B. A. Frenz \& Associates Inc. (1985). SDP. Structure Determination Package. College Station, Texas, USA, and EnrafNonius, Delft, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, revision 3. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Pietraszkiewicz, M. \& Gasiorowski, R. (1989). Chem. Ber. Accepted.

Acta Cryst. (1990). C46, 101-103

2-(p-Methoxybenzoylmethylene)-3-phenyl-1,3-thiazolidine-4,5-dione, a Compound with a $\mathrm{C}-\mathrm{S} \cdots \mathrm{O}$ Interaction

By M. Ciechanowicz-Rutkowska, J. Grochowski and B. Stec
Regional Laboratory of Physicochemical Analysis and Structural Research, Jagiellonian University, Karasia 3, 30-060 Krakow, Poland

(Received 16 November 1988; accepted 26 April 1989)

Abstract

C}_{18} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}, \quad M_{r}=339 \cdot 4\), monoclinic, $P 2_{1} / n, a=8.359$ (1),$b=9.961$ (2), $c=19.048$ (3) \AA, $\beta=93.749(12)^{\circ}, V=1582.83 \AA^{3}, Z=4, D_{m}=1.43$, $D_{x}=1.42 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{CuK} \mathrm{\alpha})=1.54178 \AA \AA^{m}, \quad \mu=$ $1.897 \mathrm{~mm}^{-1}, \quad F(000)=704, T=293 \mathrm{~K}, \quad R=0.0508$ for 2390 unique observed reflections. The molecule has a short intramolecular S \cdots O contact of $2.697 \AA$ and a C-S $\cdots \mathrm{O}$ angle of $164 \cdot 8^{\circ}$.

Introduction. This study is supplementary to an earlier one (Ciechanowicz-Rutkowska, Grochowski \& Stec, 1989) and concerns the structure of the Knoevenagel reaction substrate, crystallized successfully in a form of a p-methoxybenzoyl derivative, while the earlier study concerned the structure of the reaction product. This work was undertaken in order to assess the role of the benzoyl substituent in the course of the reaction with malonodinitrile which

takes place for compound A but not for compound B, as shown schematically in Fig. 1 .

Experimental. The title compound was obtained by Dr J. Eilmes (Żankowska-Jasinska \& Eilmes, 1973) and crystallized from chlorobenzene at room tem-

Fig. 1. The Knoevenagel reaction.

[^0]: * Lists of structure factors, anisotropic thermal parameters of non-H atoms, positional and isotropic thermal parameters of H atoms, and shortest non-bonded contacts have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52177 (17 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

